Sodium concentration coding gives way to evaluative coding in cortex and amygdala.
نویسندگان
چکیده
Typically, stimulus batteries used to characterize sensory neural coding span physical parameter spaces (e.g., concentration: from low to high). For awake animals, however, psychological variables (e.g., pleasantness/palatability) with complicated relationships to the physical often dominate neural responses. Here we pit physical and psychological axes against one another, presenting awake rats with a stimulus set including 4 NaCl concentrations (0.01, 0.1, 0.3, and 1.0 m) plus palatable (0.3 m sucrose) and aversive (0.001 m quinine) benchmarks, while recording the activity of neurons in two sites vital for NaCl taste processing, gustatory cortex (GC) and central amygdala (CeA). Since NaCl palatability (i.e., preference) follows a non-monotonic, "inverted-U-shaped" curve while concentration increases monotonically, this stimulus battery allowed us to test whether GC and CeA responses better reflect external or internal variables. As predicted, GC single-neuron and population responses reflected both parameters in separate response epochs: sodium concentration-related information appeared with the earliest taste-specific responses, giving way to palatability-related information, in an overlapping subset of neurons, several hundred milliseconds later. CeA single-neuron and population responses, meanwhile, contained only a brief period of concentration specificity, occurring just before palatability-related information emerged (simultaneously with, or slightly later than, in GC). Thus, cortex and amygdala both prominently reflect NaCl palatability late in their responses; CeA neurons largely respond to either palatable or aversive stimuli, while GC responses tend to reflect the entire palatability spectrum in a graded fashion.
منابع مشابه
A Comparative Study of Attitudinal Language Employed by English and Persian Writers in Academic Writing
Academic writing might incorporate evaluative strategies with the aim of construing and registering attitudinal positionings of writers towards other people, objects, and state of affairs included in the texts, and has been the area of investigation from different perspectives. One of these perspectives has been the way that determines attitudinal assessments in the rhetorical formation of text...
متن کاملCan't Learn without You Predictive Value Coding in Orbitofrontal Cortex Requires the Basolateral Amygdala
Basolateral amygdala and orbitofrontal cortex are implicated in cue-outcome learning. In this issue of Neuron, Schoenbaum et al. show that, following basolateral amygdala lesions, cue-selective neurons in orbitofrontal cortex are more sensory driven and less sensitive to the motivational value of an outcome, suggesting that predictive value coding in orbitofrontal cortex is dependent on input f...
متن کاملEffects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex
We examined the contribution of the amygdala to value signals within orbital prefrontal cortex (OFC) and medial prefrontal cortex (MFC). On each trial, monkeys chose between two stimuli that were associated with different quantities of reward. In intact monkeys, as expected, neurons in both OFC and MFC signaled the reward quantity associated with stimuli. Contrasted with MFC, OFC contained a la...
متن کاملPower Allocation Strategies in Block-Fading Two-Way Relay Networks
This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...
متن کاملEfficiency of Information Coding in Various L/M Retinal Cone Ratios
Previous evidence has shown that the number of L and M cones in retina varies significantly between subjects. However, it is not clear how the variation of L/M ratio changes the behavioral performance of the subject. A model of transformation of data from retina to visual cortex for evaluation of various L/M cones ratios is presented. While L/M cone ratios close to 1 brings the best performance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 29 شماره
صفحات -
تاریخ انتشار 2012